

1st IEEE Workshop on Electromagnetic Information Theory towards 5G-Advanced (5.5G EIT)

ORGANIZERS

Marco Di Renzo, CNRS & Paris-Saclay University, France Linglong Dai, Tsinghua University, China Marco Donald Migliore, University of Cassino and Southern Lazio, Italy Tengjiao Wang, Huawei Technologies, China

INVITED TALK

When Shannon meets Maxwell: Electromagnetic Information Theory in 5.5G, by Tengjiao Wang, Huawei Technologies, China 1.

2. 5.5G EIT: State of Research and the Road Ahead, by Marco Di Renzo, CNRS & Paris-Saclay University, France

TPC MEMBERS

Jiyong Pang, Huawei Technologies, China	Wei E. I. Sha, Zhejiang University, China
Pei Xiao, University of Surrey, UK	Marco Donald Migliore, University of Cassino and Southern Lazio, Italy
Zhimeng Zhong, Huawei Technologies, China	Anxue Zhang, Xi'an Jiaotong University, China
Hongjing Xu, Huawei Technologies, China	Shigang Zhou, Northwestern Polytechnical University, China
Fenghan Lin, ShanghaiTech University, China	Marco Di Renzo, CNRS & Paris-Saclay University, France

SCOPE

In order to meet the immensely higher data rate, reliability, and traffic demands in the future 5G-Advanced communications, novel communication frameworks are rapidly emerging to fully utilize the electromagnetic waves, including holographic MIMO, extremely large antenna arrays, reconfigurable intelligent surfaces, etc. The ultimate limitation of the channel capacity and the ways to achieve this capacity are two fundamental questions in the system design. However, current design and performance analysis methods are usually based on the scalar-quantity, far-field, planar-wavefront, monochromatic and other non-physically-consistent assumptions, which may cause mismatch between the system design and the realistic propagation environment.

To solve this problem, the emerging electromagnetic information theory (EIT) is proposed and has attracted increasing interests from both academia and industry. By integrating the statistical information theory with the deterministic electromagnetic theory, it is able to build a more physically consistent communication model and establish more fundamental limitations on the communication systems. It is expected that EIT will bring brand new theoretical analysis and system design paradigms to the future wireless communications.

While research into EIT based theoretical analysis, signal processing, channel modeling, antenna design, and standardization for the future wireless communications are still in the early stage, it is essential to establish a clear vision and provide guidance for the worldwide academic researchers and industrial partners. Thus, we believe this workshop will bring a good opportunity to attendees from both academia and industry to present novel ideas on EIT and to exchange views on 5G-Advanced openly.

TOPICS OF INTEREST (including but are not limited to)

EIT based Theoretical Analysis	EIT based Channel Modeling
· Channel capacity analysis	· Physics consistent channel modeling
· Degree of freedom analysis	· Computational electromagnetics

- · Degree of freedom analysis
- · Characteristic mode analysis
- · Performance evaluation

IMPORTANT DATES

Paper Submission Deadline: Paper Acceptance Notification: Camera Ready:

24 February 2022 17 April 2022 1 May 2022

· Circuit theory based modeling

· Reactive/radiating near field modeling

EIT based Signal Processing

- · Beamforming for near/far field
- · Channel estimation for near/far field
- · Interference cancelation
- · Joint system optimization

SUBMISSIONS

EIT based Antenna Design

- · Holographic MIMO
- · Extremely large antenna arrays
- · Reconfigurable intelligent surfaces
- · Electromagnetic metasurfaces

Submission link: https://vtc2022s-rr-wks.trackchair.com/track/2052 Contact: Tengjiao Wang (wangtengjiao6@huawei.com)

